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When a laser beam is used as the energy source for welding two pieces of metal 
together, a hole is formed perpendicular to the plane of the workpiece. The latter is 
moved relative to the laser and metal is transferred from the front to  the rear by 
fluid flow round the hole. The equations governing the process are set out and the 
conditions a t  the two boundaries in the problem (one between the hole and the molten 
metal, and the other between the liquid and the solid states of the metal) are 
considered. 

Approximate solutions of the problem for low welding speeds are obtained for four 
different models. The first is one in which the viscosity is taken to  be constant. In  
the second, the viscosity is allowed to depend linearly on temperature. The third 
model divides the liquid into a region in which the cooler part is taken to be viscous 
and the hotter part inviscid; the fourth model is then constructed as a limit, with 
the liquid motion considered as wholly inviscid. It is found that the motion is not 
irrotational in this last model. The models all display a downstream displacement 
of the boundary between the solid and liquid states, in agreement with observations. 
An expression for the minimum power of the laser is calculated, 

1. Introduction 
Lasers are being used in industry for an increasingly wide variety of purposes (La 

Rocca 1982); one purpose for which they are particularly well suited is to supply the 
energy for welding. A weld can be made with a laser beam that is pointed almost 
perpendicularly to the metal work-piece in the way shown in figure 1 .  Initially the 
beam creates a hole, but subsequently as the metal is moved relative to  the laser this 
‘keyhole’, as i t  is usually called, moves through the metal with only a small amount 
of matter lost by further vaporization. The power supplied by the laser beam leads 
to the melting of a region about the keyhole, whose cross-section is observed to be 
very close to circular, although its radius is not necessarily independent of depth 
(Klemens 1976). Metal then flows in this liquid region from the front of the hole to 
the rear, where it ultimately solidifies again. Some of the metal may cross the hole 
in the form of vapour, but this does not appear to be the main method of transfer. 

The form of welding described above is rather similar to electron-beam welding and 
plasma-arc welding; a review of solved problems in heat conduction that can be used 
to model the efTects of a laser is given by Duley (1976, chap. 4). The thermal aspects 
of the problem under consideration here have been studied in detail by Swift-Hook 
& Gick (1973), but they replaced the keyhole by a line source so that the metal moves 
relative to it with a constant velocity a t  all times. Holes of finite size have been 
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I kz I Direction of travel 

FIGURE 1 .  Geometry of laser beam relative to workpiece. 

considered by Ol'shanskii (1974) for electron-beam welding and by Klemens (1976) 
for electron-beam and laser welding. The problem considered by Ol'shanskii did not 
involve complete penetration and included a substantial space behind the beam not 
directly influenced by it ; the flow that resulted was driven by temperature variations 
in the surface tension, but that  seems unlikely to be an important mechanism in our 
problem since the sides of the keyhole are necessarily a t  or near to boiling 
temperature, when the surface tension will be very small, but substantial transport 
of metal is still taking place. Klemens discusses thc  problem using approximate 
methods and obtains a self-consistent description of cavity formation and beam 
penetration but without detailed solut,ions for the pattern of flow and temperature 
distribution. 

In this paper we shall investigate the steady continuous laser-welding process in 
which the metal translates with constant velocity U relative to a perpendicularly 
directed laser beam. We shall concentrate on the description of the flow of metal 
around the keyhole and of its temperature. For thc purposes of obtaining analytical 
forms for the solution we shall make the two basic assumptions that the PBclet number 
of the flow is small, and that the motion is steady and two-dimensional. For two of 
the models discussed, the Prandtl number will be assumed to be of order unity, but 
the last two models include regions in which the fluid motion is inviscid. 

The conditions on the liquid flow and temperature distribution a t  t'he boundary 
between the solid and liquid states are relatively straightforward ; however, tlhe 
Conditions to be imposed on the surface separating the keyhole from the molten metal 
are less certain and require some consideration. 

I t  is probable that the hole itself is kept open by a combination of the pressure 
of the plasma that forms in the keyhole and the recoil pressure of the e~aporat~ing 
metal, but conclusive information about this, either from experimental evidence or 
theoretical considerations, is not available. Another problem is that it does not) seem 
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to be known for certain exactly how transfer of power from the laser beam takes place 
inside the keyhole. One possibility is that  the power of the laser is absorbed and 
reflected directly a t  the surface of the metal, in a way that is well illustrated by Duley 
in the diagram on p. 246 of his book. It is quite possible that this is an important 
mechanism, but it does not seem entirely adequate. Experimental evidence shows 
that for pulsed laser beams falling on a metal surface an air plasma sometimes forms 
above the surface, and Pirri, Root & Wu (1978) have shown that the plasma 
substantially improves the coupling between the laser and the metal ; energy transfer 
is then by reradiation from the plasma. In their example only pulsed lasers were 
Considered, and in many ways the situation differs a good deal from that of 
penetration welding by a continuously working laser, but their work clearly shows 
how important the plasma can be. It seems that a plasma is formed in the keyhole; 
the laser passes some of its energy to  the plasma, which then transmits it to the metal 
by a combination of reradiation and conduction. The rest of the energy is reflected 
by the plasma, absorbed directly by the metal or reflected before being absorbed. 

I n  contrast to the approach of Pirri et al., Mazumder & Steen (1980) use a model 
in which, as a device for calculation, points in the keyhole are treated as part of the 
metal, but a t  a fictitiously high temperature, and energy is allowed to pass from these 
into the liquid part of the metal by conduction. This is perhaps another extreme, but 
it is possible that lateral conduction is here as important as reradiation, since, in 
contrast to the situation considered by Pirri et al., the process is taking place in a 
very confined space. I n  both of these explanations the existence of the plasma is 
crucial. If the density of the plasma is too great the energy is reflected and not 
absorbed, while in its absence welding does not take place, so there is clearly an 
optimum density. If the density is not uniform across the keyhole even the 
somewhat-deflected form of the hole with depth could be explained without appeal 
to direct absorption a t  the liquid surface. 

It is usual to assist the welding process by blowing a stream of gas (helium or argon) 
coaxially with the laser beam; in the case of argon this also forms a plasma, which 
helps in the process of transfer of power, but in the case of helium there is no such 
interaction. One possible function of the jet may be to prevent the density of the metal 
plasma from becoming too great, since if it does the laser beam is reflected and welding 
ceases temporarily. There is therefore a steady (though quantitatively small) loss of 
metal by vaporization into the hole. The amount of matter lost may be small, but 
it plays an important part in the process and incidentally shows that the inner surface 
of the keyhole must be a t  or very close to the boiling point of the metal. We shall 
therefore assume that this surface is an isotherm with a temperature that will be taken 
as the boiling temperature; the heat transfer into the metal, though not important 
to the solution, can be related to the power of the laser, the radius of the keyholc, 
the speed of cutting, and the physical constants of the metal. I ts  relation to the powcr 
required from the laser means that it is a quantity of considerable practical interest, 
and it can be calculated after the solution has been obtained. 

Conditions on the fluid motion are simpler: clearly there can be no tangential 
component of stress at the surface since the mixture of plasmas and gas in the keyhole 
cannot support one. The normal component, however, need not be constant, since 
the axial symmetry of the laser and the mechanics of the keyhole are such that 
to a first approximation the boundary also must have axial symmetry, stress per- 
turbations associated with the metal flow being too small to have a significant 
effect. 
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It will be assumed that the variation in size of the hole with distance parallel to 
the beam is sufficiently small for i t  to  have relatively little influence on the flow round 
the hole, so that the motion is effectively two-dimensional. I n  practice this will not 
always be the case, but in many instances the radial lengthscale of variation of 
temperature is in fact much less than the lengthscale parallel to the laser over which 
the keyhole changes diameter. It will be assumed that the amount of mass lost by 
vaporization is unimportant for this part of the calculation, even though, as 
mentioned above, it plays an important part in the thermodynamics of the process. 

I n  practice all the physical constants of the material of the workpiece can be 
expected to depend on temperature; the specific heat of solid iron for example 
includes spikes and discontinuities in its temperature dependence (Austin 1932). We 
will, however, treat these properties as constants for the most part, or allow only 
differences between the solid and liquid states. No variations in density between solid 
and liquid states or with temperature in a given state will be considered. 

There is one exception to the above remarks. The viscosity of a liquid normally 
depends heavily on temperature, and, although not much information on the variation 
of viscosity of liquid metals with temperature is available, there is no reason to 
suppose they are radically different in this respect. In  particular we should expect 
the liquid to be substantially less viscous near its boiling point than near its freezing 
point, and that consequently its flow is likely to be more strongly concentrated near 
to the keyhole than would be predicted by a model in which the viscosity is constant. 
The first model studied in $3 (model I) is therefore one in which the viscosity is 
constant, and the second (model 11) is one in which i t  is a linear function of 
temperature that vanishes at the boiling-point, but for which the Reynolds number 
of the flow as a whole is still low. The two models of $4 are an attempt to  remove 
the small-Reynolds-number condition. The first (model 111) is one in which the liquid 
region is divided into an outer layer in which the liquid is viscous and the Reynolds 
number small, and an inner layer that  is treated as if the liquid were inviscid ; one 
purpose of this model is to demonstrate the way in which the reduction of viscosity 
with temperature concentrates the flow near the keyhole. It has a second purpose, 
however; if the Prandtl number is taken to be small (for iron it is 0.057) i t  might 
sometimes be plausible to use an inviscid model for the liquid. In  this case the 
continuity conditions a t  the interface between the solid and liquid phases are not 
entirely obvious, and so model 111 can be used to investigate what happens when 
a single inviscid layer is obtained by taking the limit of model 111 as the thickness 
of the viscous layer tends to zero. This limit is model IV, which models the liquid 
motion by that of an entirely inviscid fluid. 

2. Governing equations and conditions at an interface 

distribution of temperature T is 
I n  a solid medium moving with a uniform velocity U the equation governing the 

where 
~a 
- = -+u .v, 
Dt at 

and K, is the thermal diffusivity of the solid corresponding to a thermal conductivity 
k, (Batchelor 1967, p. 136) if the expansion of the material is ignored and E ,  is assumed 
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Region 2 

FIQURE 2 .  The normal n relative to interface S between regions 1 and 2 showing conventions for 
positive directions; ri is the normal velocity of S in the direction of its own normal. 

constant. The equations governing a fluid in motion are given by Batchelor (p. 164) 
as follows. The temperature equation is 

where 

- = K V T ,  
DT 
Dt 

~a 
Dt at 
-=-+u.v ,  

provided that the expansion of the liquid is ignored, its density is taken to  be constant 
and equal to that of the solid, and the conversion of mechanical into thermal energy 
is neglected ; K is the thermal diffusivity of the liquid and is related t o p  and the specific 
heat a t  constant pressure c p ,  by k 

P C P  

K = -  

where k is the thermal conductivity, which has been assumed to be constant. The 
velocity vector is u (with components {ui}) a t  position r = {xi} and time t ;  i t  then 
satisfies the equation of conservation of mass 

v . u  = 0. 
The Navier-Stokes equation is 

(2.3) 

(2.4) 

if the applied body-force is F ; p  is the coefficient of viscosity and p is the pressure. 
Suppose that, at time t ,  S separates region 1 from region 2 and that i t  is described 

by the equation 
S(r, t )  = 0;  

let the unit normal from region 1 to region 2 be n; denote the velocity at which points 
on X move along n by n, and use subscripts 1 and 2 to distinguish between values 
of properties of the substance on either side of S (see figure 2 ) .  Then if V S  =I= 0 
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S(r+lindt,t+dt) = S(r,t) = 0;  

subtracting these two equations, dividing by dt and taking the limit as dt + 0 gives 
the result 

The rate at which mass crosses an almost-plane element of area dS of X from region 
1 is 

pl(ul.n-h)dS, 

which can be written as 

if use is made of (2.6), while the rate at which mass enters region 2 across i t  is similarly 

Since conservation of mass requires these two to  be equal, the limit as dS -P 0 gives 
the condition ["I: = 0. 

If the motion is steady and there is no change of density, this implies continuity of 
the normal component of velocity. 

Conservation of thermal energy can be expressed in the same way (see e.g. Carslaw 
& Jaegar 1959, p. 284; Tayler 1975). The forms given by these authors may be 
modified to take account of the relative motion of the fluid phase by considering the 
rate a t  which heat flows towards S from region 1 ; this is - k, n . VT,  dS, while the 
rate a t  which i t  flows from the boundary into region 2 is - k, n . VT, dS. The rate of 
release of heat on transition from 1 to 2 is (u, . n--li)p, L,,dS, where L,, is the latent 
heat of transition per unit mass: if 1 is liquid and 2 is solid, for example, i t  is the 
latent heat of melting. Conservation of thermal energy then requires that 

-k, n . VT, dS+ (u, . n-h)p, L,, dS = -k2 n . V7;dS. 

Use of (2.5) and (2.6) after division by dS and taking the limit as dS + 0 shows that 
the condition can be written 

DS 
Dt 

[kVT]? .vs+p--,, = 0. 

There are further conditions on the velocity at such a transition, The force per unit 
area exerted by the substance in region 1 on that in region 2 is equal and opposite 
to the force exerted by 2 on 1 .  If both regions are fluid this condition becomes, in 
the absence of surface tension, 

(Batchelor 1967, p. 150). The final condition that will be employed is that the 
tangential component of the velocity vector is continuous as the substance crosses 
s, so 

[u]: x n = 0.  (2.9) 
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At a change between a solid and a viscous fluid, or between two viscous fluid states, 
the reasons given by Batchelor (pp. 60,149) apply. We shall assume that the condition 
also applies when the transition is between viscous and inviscid fluid states on the 
grounds that an  impulsive accelerating force would be necessary otherwise, and the 
fluid possesses no mechanism for supplying such an impulse. 

If the motion is two-dimensional, (2.3) can be satisfied exactly by introducing a 
stream function $(x,y), where x,y are coordinates in the plane of motion and 
u = V x ($2) where 2 is a unit vector perpendicular to the plane of motion. 

If the motion of the fluid is considered to be inviscid, the body forces are ignored 
and the motion is steady, (2.4) can be solved to give 

V V  = f ( $ ) .  (2.10) 

(2.11) v2+ = -<$. 

It will be seen later that the conditions of the problem require the equation to be 
linear, so that 

The pressure is then given by 
P = P , + ~ ~ c $ 2 - v $ 2 ) .  (2.12) 

Normally, the effects of viscosity must be taken into account, but we shall suppose 
that the velocity is sufficiently low for inertia forces to be neglected, as will be the 

(2.13) case if 

where a is a characteristic length in the problem. 
The stream function $ is then a solution of 

paU 6 p, 

pV4$ + V"Vp. V$) + vp . VVZ$ - v2p V2$ - V$ . vv2p = 0, (2.14) 

which simplifies when p is constant to  

V4$ = 0. (2.15) 

Under these conditions, the pressure can be obtained by integrating 

vp = p V V $  x 2. (2.16) 

The boundary conditions similarly simplify if all densities are taken to have the 
same value and the flow is steady; (2.7) and (2.9) then imply that the velocity is 
continuous across an interface, that is 

[u]? = 0. (2.17) 

The interface is an isotherm, and a t  i t  (2.8) shows that 

( [ C p  KVT]? -t LIZ U)  . v8 = 0. (2.18) 

3. Two single-layer models 
I n  the models of this and $4 the evaporating boundary of the fluid is taken to be 

a t  r = a (where polar coordinates ( r ,  6) are employed and x = r cos 6 ) ,  with the basic 
assumption that the PBclet number is small, so that 

ua 6 K,, K ,  (3.1) 

where K, and K are the thermal diffusivities of the solid and the liquid respectively. 
In  those models in which the effects of viscosity are included, the Prandtl number 
p / p ~  will be assumed to  be of order unity. We shall then look for solutions in which 
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\ Solid 

FIGURE 3. Cross-section of the keyhole and molten region for models I and 11, 
showing the two interfaces. 

the boundaries between the various regions are almost circular and which are 
consistent with an Oseen-type solution of the equation for the temperature, similar 
to that given by Lamb (1932, p. 615). 

The first of the two models considered in this section is one in which the viscosity 
of the liquid metal is taken as constant, and the second is one where it is taken as 
a linear function of temperature which vanishes on the inner boundary. The general 
configuration is shown in figure 3. We shall find that it is possible to construct a 
solution in which the boundary between the solid and liquid states is a t  

r = b+hUcosO, i.e. S = r -b-hUcos8;  (3.2) 

(3.3) 

the stream function in the liquid region is 

?+h = Uf(r) sin 0 ;  

T = g( r )  + Uh(r) cos 0 ;  

T = Z(r) + Um(r) cos 8. 

the temperature in the liquid region is 

(3.4) 

and the temperature in that part of the solid region for which r is not significantly 
greater than b is 

(3.5) 

Since (3.2) is an isotherm, T = T, (the melting temperature ofthe metal), linearization 
of the boundary conditions when applied to (3 .5)  shows that 

Z(b) = T,, hZ’(b)+m(b) = 0, (3.6a, b )  

and in the same way 
g(b) = Tm, hg‘(b) + h(b)  = 0. ( 3 . 7 a ,  h )  
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The heat-flux condition (2.18) implies that 

ksZ’(b) = kg’(b) ,  pL+ k s { h Z ” ( b ) + ~ ’ ( b ) ) - k { h g ” ( b ) + h ’ ( b ) }  = 0, ( 3 . 8 ~ ,  b )  

where k ,  is the thermal conductivity of the solid state and k that of the liquid, and 
IJ is the latent heat of melting of the metal. The condition that r = a is an isotherm 
on which T has the value 7;, the temperature a t  which the metal vaporizes, leads 

(3.9a, b )  
to the conditions 

g(a)  = T”, h(a)  = 0. 

The conditions on the stream function $ at r = a are that i t  is the stream surface 
$ = 0 and that the tangential component of the surface stress er0 vanishes. 

In consequence 
lim f ( r )  = 0: 

r+a+ 
(3.10) 

?+a+ lim p{rf ’ ( r ) - j ’ ( r ) }  = 0. (3.11) 

At r = b (2.17) requires that 
f ( b )  = b, f ( h )  = 1. (3.12 a ,  b )  

It is possible to find T in the solid rcgion and the value of b by the method given 
by Lamb (1932, p. 615). 
an asymptotic form 

(Carslaw & Jaegar 1959, 
from the keyhole, C is a 

For large value of r ,  T must satisfy (2.10) and thus-have 

I’-To+Cexp - KO - {El 
p. 267), where T, is the temperature of the metal far away 
suitable constant and 4 is a modified Bessel function. As 

r +co this tends to T, in all directions, and when r is small i t  has the approximate 
form 

( y  is the Euler-Mascheroni constant), provided that 

Ur 6 K, 

but 
Ur 

ln- = O(1). 
4% 

ria 

4% 
Thus, provided that b - a, ln- = 0(1), 

which can still be true even though (3.1) holds, the linearized form (3.5) of T, 
substituted in the linearized form of (2.1) and satisfying (3.6), must be 

T, - To {y+lnK-- Ur [JyK:f3 Ub 
T=T,+  -ln-+y 

y + In ( Ub/4~,) 4% 

-rln-+- 4 ~ ,  ur 2hKs]}. r (3.13) 

1 
r 

In  the liquid rcgion g satisfies 
g”+-g’ = 0, 

and so (3.7a) and ( 3 . 9 ~ ~ )  are satisfied if 

(3.14) 
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The condition (3.8a) then determines the value of the mean radius of the boundary 
between the solid and liquid states as 

(3.15) 

So far the two models lead to  identical results, although A,  which appears in (3.13), 
has yet to be determined. To find the fluid flow and that part of the temperature 
distribution in the liquid metal that  depends on 8, the way in which the viscosity is 
allowed to vary with temperature must be taken into account. To calculate @ to a 
linear approximation, only the term in y independent of Q need be taken into account; 
and if in the second model y is assumed to  be given by 

Tv-T 
P=PQ- 

(giving y = yo on S and ,u = 0 on r = a )  then it follows from (2.14) thatf(r)  satisfies 

TV - Trn 

(3.16) 
I n  the first model, (2.15) implies that  i t  satisfies 

2 (g+;f-f) f = 0. (3.17) 

It is possible to write the general solution of each of these equations in terms of 
four functions fl, f2 ,  f3 and f4,  where {rfi} are solutions of (3.16) or (3.17) as appropriate, 
rfl and rf2 sa$isfy both conditions (3.10) and (3.11), rf3 satisfies (3.10) but not (3.11), 
and rf4 satisfies (3.11) but not (3.10); expressions for them are given a t  the end of 
this section. The solution can therefore be expressed in terms of fi and f2 only. I n  
order to satisfy the two conditions (3.12a, b )  it  follows that 

f ( 4  = @lfl(r) + azf2(r)} r ,  (3.18) 

It is now possible to find h(r).  Suppose that the equation 

d2h i dh  h 1 
dr2 rdr  r2 ar 

= - f .  (i = 1 , 2 )  

has solutions 

where h, and h, both satisfy (3.9 6) ; once again, forms for these functions are given 
a t  the end of the section. Equation (2.2) implies that  h is a solution of 

d2h ldh h f d g  Tm-Tv f 
dr2 rdr  r2 Krdr Kln(b/a)r2' 

= -- = (3.19) 

so h must be a suitable combination of rh,, rh2 and a/r-r/a. To satisfy (3.7 b) i t  must 
be 
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where 
a1 hl(b)  +a2 hdb)  a, = 

1 - a2/b2 

133 

As a final stage i t  is now possible to satisfy (3 .8b ) .  This result is a condition t,hat 
determines A ,  whose value is found to be 

ks(Trn-T,) 1 Ub (b2 - a2) In ( b l a )  
(-+ y + 1n-)] 4 K s  2k(T!-Trn) [" + K s (  y + In [ U b / 4 ~ , ] )  2 

+ b ( b 2 - a 2 ) [  2 K  

The functions f i  and hi are given below. 
For model I (in which the viscosity is constant) 

For model 11, when 
corresponding functions 

a2 r2 r 

r2 a2' a 
a2 a2 

3r2 

a4 + b4 1 

fi(r) = --- f2 ( r )  = ln-, 

f 3 ( 4  = 1 - 7  > f4(r) = 1 +-, 

f,'(b) = - 2 - a2b3 9 f , ' (b)  = b ;  

a2 b a2 b 
b3 a 2b3 4a2 

hi (b)  = -In--- i b l  
2b a 4b' 

hi(b)  = -In----- 

the viscosity is allowed to depend linearly on T, the 
are 

f ; ( b )  = 2 g l , (  ah!), 
a 

2 f i  (b )  = 6 Lo ( 2 In k) ; 
a 
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In (Wa) 
Io (5 )  d ( + i  In (i) U { I ,  (2 In h) Cl - I ,  (2 In :)} , 

Here, I and K are modified Bessel functions, and Lo and L, are modified Struve 
functions (see Abramowitz & Stegun 1965, p. 498). Note that the singularity of KO 
a t  6 = 0 is integrable, so f3 is well-defined. 

4. The two-layer model 
This model (model 111) is the same as the constant-viscosity model of $3, except 

that  there is a second layer adjacent to  the keyhole in which viscosity is ignored in 
order to take partial account of the likelihood of almost inviscid flow in the region 
occupied by the hottest metal; if the Prandtl number of liquid mctal a t  high 
temperatures is small i t  is possible for this to happen even though (3.1) holds. A 
relatively thin viscous layer immediately adjacent to the solid boundary may still 
occur. A similar notation to  that  used in $3 will be employed, except that quantities 
defined in the inviscid region will be distinguished by a bar placed over the top of 
the appropriate symbol; it should be noted that, in order to satisfy the discontinuity 
conditions, @ must also have such a form in the inviscid region, and this is only 
possible if the unknown function in (2.10) is linear. In particular the boundary X 
between the viscous and inviscid region is given by 

r = b+Xucose, (4.1) 

and the temperature a t  which transition occurs by T.  The general configuration is 
shown in figure 4. For simplicity we shall assume that the thermal conductivities and 
specific heats in the two fluid regions are the same, so that iT- = K and E =  k. I n  that 
case some of the results of $3 still apply; in particular the temperature in the solid 
region is still given in terms of h by (3.13), the mean radius b of the solid/liquid 
boundary still has the value given in (3.15), while g(r) and g( r )  have the same 
analytical form given by (3.14). However, g(b) = g(b) = T, so b must be given by 

(T!-T)ln (b/a) b=  aexp { T,--T, 

Once again h satisfies (3.19), while k is a solution of 

d 2 h  ldh h T,-T, 1 
dr2 r dr r2 Kln @ / a )  r2 

= 

(4.2) 

(4.3) 

The forms for f andf, however, are different. The function f satisfies (3.17) as before, 
but as a result of (2.11) f is a solution of 

d2f 1 df f 
r d r  r 

s+---> = -Cf; (4.4) 

C is a constant that relates the vorticity to the individual streamlines. There is no 
a priori reason to suppose that the flow in the inviscid region is irrotational. 

The boundary conditions on f a t  #, however, are that there is no stress (bearing 
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FIGURE 4. Cross-section of the keyhole and molten region for model 111, 
showing the three interfaces. 

in mind that the pressure in the inviscid region is, as (2.12) shows, necessarily of order 
V p  and therefore negligible in our model); so 

and, since we now also require a l a $  
p =p,+Zp-- - - - ,  

ar r ae 
where p is given by (2.16), f must also satisfy 

The only solution of (3.17) that satisfies all four conditions (3.12a, b ) ,  (4.5) and (4.6) 

(4.7) 
is 

f ( r )  = r .  

In the inviscid region it is possible to write the stream function in terms of a single 
function f that satisfies (4.4), f (a)  = 0 and f(6) = f(6) ; its form is given a t  the end of 
this section. There is, however, an additional constraint imposed by (2.17). This 
requires that all components of u, not just the normal one, should be continuous, and 
hence that f ( 6 )  = J”(6). Consequently 

&@[J,,(@) Y,(u@)- &(@) J l (a@)]  = J1(@) Y,(a@) - Y1(@) Jl(a@), (4.8) 

an equation that has to be solved numerically for the smallest positive value of 5 that 
satisfies it. All the expressions given above are in the form appropriate to a positive 
value of 6; they would apply equally well if it  were negative, but investigation shows 
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that in fact there are no negative roots. It is readily checked that if [ = 0 no solution 
satisfying all three conditions on f exists; i t  is interesting to note that (4.7) means 
that in fact there is steady uniform motion in the viscous part of the liquid, with all 
the transport around the keyhole taking place in the inviscid region. 

It is now possible to find the temperature distribution. In  the viscous region it is 
given by 

T = g(r)+h(r)  UCOSB, 

where g( r )  is given in (3.14) and h satisfies (3.19) together with 

h(b)+Ag'(b) = h(b)+Xg'(b) = 0;  

the form of h that satisfies these conditions is given a t  the end of this section. There 
is, however, an additional condition as a consequence of (2 .18);  i t  is the same as (3.8b) 
and leads to the condition 

k,(T,-T,) ($+y+ln (ub/4~, ) )  ( b 2 - 6 2 )  ln(b/a) 
pL+ ~ ~ ( ' y + l n ( U b / 4 ~ , ) )  1 2k(Tv-Tm) 

I n  this way a relation between A and h is obtained. 

the form T = g ( r )  + h(r) U cos 8, 

where g ( r )  is given in (3.14) and h i s  a solution of (4.3). 

Finally the temperature distribution in the inviscid region can be found. It is of 

h(a) = 0, hg'(6) + K(6) = 0, 
Since 

hmust have the form given a t  the end of this section. Lastly there is a condition that 
comes from (2.18) when L,, = 0 and [ c p  K ] :  = 0, which is so here since we are assuming 
that the thermal properties of the liquid are unchanged on transition from a viscous 
to an inviscid state. 

The condition then implies that 
h'(b) = I?(@, 

and so a second relation between h and h is obtained; i t  is 

where h,, h2, Po, PI and P2 are all defined below. Equations (4.9) and (4.10) can be 
solved for A,  h, and so the solution of the problem can in principle be obtained. 

A case of special interest occurs when r =  T,, so that the viscous layer is 
vanishingly thin. This is model IV, for which most of the expressions are the same 
as those obtained above, modified only by replacing b by band A by h. However, (4.9) 
and (4.10) have to be solved for h and a limit taken as 6+ b ;  this gives 



aours 2 ss 113~ ss uaa@ s~ ;2w ! T alqsq u~ uan@ am suoqnlos ayq 30 squsqsuo:, iayqo 
pus s!yq 30 anlsn ayq ‘uospsdwoo JO~ .slapow ~no3 11% u! awss ayq s! ‘saqsis pgos pus 
pnbq aqq uaaMqaq ilispunoq ay33o sn;ps.I uvam ayq ‘qjo anp aqL ’pays!M aq ppoo ss 
~pws ss qou s! aaqwnu spIouLa8 ayq qvyq s! ao!oyo sqq30 qaadss ilaoqos~s~~ss-qssa~ ayL 

ilIqsuossaJ suo!q;rpuoo il.mpunoq ayq il3s9ss qsyq suo!qn-[os oq pea1 put? aoyqosld 
u! pasn a8uw ayq 30 pua aaMo1 ayi 9s am sanpn asaq fpaysyss ilpuySmw LIUO s! 
(1.1) uo!q;rpuoo ayL 

‘(9~6~ LayqqQ q sMaipug fz861 so308 s~ OSIB aas paonpo.Id aq 
ilsm ivy? aloy 30 azrs ayq ~03 : aqnq!qsuI8u!pIaM ayq ilq paqddns sqsp) mo 5~0.0 = w 
‘I-s w:, ~L.O = fl aq oq uaysq aJaM aIoyLay ayq 30 sn!psz pus paads Su!plaM ay;L 

pus w~ 30 usam ayq ss uaysq uaaq ssy J ‘111 lapour JO~ 

:s~o[103 sv am uo!qnlos 
ayq 30 uo!qsnqsuoo ayq u! pasn pus anoqs oq pamaja,~ squsqsuoo puv suoqaund 

LI I Buyqam ~aswq J’o s3pxwuhp pznqg 



138 J .  Dowden, M .  Davis and P. Kapadin 

Model T Model 11 Model 111 Model IV 

b (cm) 00500 00500 0.0500 - 

b (cm) 0.0274 00500 
00235 00239 0.0246 - 

- - 040776 00241 
- - 7230 362 

- - 

1 (s) 
(8) 

5 
a!$ 1.28 0286 - - 

3, 4, 13, 14, 3, 4, 13, 14, 4, 13, 14, 15 13, 14, 15 
15, 18, 20, 21 15, 18, 20, 21 

$3  

§4 - - 2, 8, 9, 10, 12, 8, 11, 12, 14 

13, 14 

TABLE 1. Constants of the solutions for each model, and references to  
equations describing the solutions 

the former is a dimensionless number, but i t  should be remembered that it depends 
on all the other constants of the problem. Reference to equations in $53 and 4 above 
that describe the solution for each model are also included in the table. 

All the models have a number of qualitative features in common, and, in order t o  
display these, model I will be described in some detail. Figure 5 shows the temperature 
distribution, with the temperature in the liquid shown in ( a )  and in the solid on a 
much smaller scale in ( b ) .  I n  the liquid there is a rise in temperature that is very nearly 
axisymmetic: the departures are not obvious in this projection. The asymmetry of 
the distribution in the solid however is quite clear, with high temperatures reaching 
further behind the laser than they do in front. 

Figure 6 ( a )  shows a graph of the stream functon @ in the liquid, and a contour 
map of i t  is shown in figure 6 (b ) .  As is to be expected, these show that the metal flows 
round the hole with a velocity that is greatest in the plane containing the laser beam 
and perpendicular to the direction of motion. A contour map of the radial component 
of velocity is shown in figure 7 ( a )  and of the azimuthal component in figure 7 ( b ) .  The 
latter shows that the velocity of flow is greatest in the plane 8 = !gr somewhere near 
the middle of the liquid region, and not a t  the free boundary. 

The two main ways in which the models differ from each other are in the character 
of the fluid flow, and in the nature of departures from the axisymmetric temperature 
distribution. The first are most clearly seen by comparing graphs off(r)  for each of 
the models (equivalcnt to comparing the magnitudes of the velocities a t  8 = &r), and 
graphs of h(r) .  The former are shown in figure 8 and the latter in figure 9. 

The velocity profiles shown in figure 8 illustrate the way in which there is a 
progressive relaxation of the influcnce of the conditions on the surface stress a t  r = a 
as we move from model I to model I1 and then model IV. The fluid transport becomes 
more and more concentrated near to the keyhole, with consequences that will be seen 
when h is considered. The graph of model 111 appears almost like two straight-line 
segments; in fact the portion in a < r < bis not quite straight but is so to  a fairly 
good approximation with this particular choice of parameters. The continuity and 
stress conditions require uniform motion in b <  1' < b ,  so that the departure in the 
inviseid region of flow is necessarily greater. 

It will be seen from figure 9 that the downstream displacement of the isotherms, 
indicated in detail by h and in outline by the values of h and 2 given in table i ,  are 
in fact very similar for models I, I1 and IV. This is an accidental consequence of the 
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( a )  

2 -4.5 
4.5 

\ 
4.5 

' 1  30 

-130' 
-130 

FIGURE 5 .  ( a )  Temperature in the liquid region for model I ;  for clarity T has been given the value 
of T, inside the keyhole and T, in the solid region. ( b )  Temperature in the solid region, to a much 
smaller scale. 



140 J .  Dowden, M .  Davis and Y. Kapadia 

-4.5 < 
-4.5 

4.5 

3 
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1 

yla 0 

-- 1 

-2 

-3 

FIGURE 6. The stream function for model 1. ( a )  Graph; for clarity i t  has been given a value of zero 
outside the liquid region. (b )  Contour map;  contours at multiples of 0.01 cm2 s-l. The two rircles 
show 7 = a and T = b, between whichfis defined. The broken curve shows the next approximation 
t o  the location of' the outer boundary. 
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(a ) 

141 

-4 -3 -2 - 1  0 1 2 3 4 
x la 

(6) 

FIGURE 7. Contour maps of the velocity components for model I. (a )  Radial component; contours 
at multiples of 0 2  cm 0. ( b )  Azimuthal component; contours at multiples of 025  cm SO. 
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f ’ ( r )  

3.0 

2.0 

1 .o 

0 0-02 0.03 0.04 0.05 
r 

FIGIJRE 8. Graph off(r), equal t o  -us/ [ /  at 0 = $7, for each of four models in the liquid region : 
model 1 .  - ._ ._ ._ ._ ._ ._ .- .- model 11. . . . .-. . . . , model 111; - - - 

-, modkl IV. The’circle on the curve fo; model 11; is drawn at r = bto  show the point of transition 
between the viscous and inviscid states. 

particular choice of material constants; the forms for ao-a2 and tend to 
magnify the fact that K, is fairly large compared with K ,  so that h in (3.20) and h in 
(4.14) are both quite well approximated by ignoring the terms in u and fi. Similar 
remarks apply to h and A. The form of the isotherms is rather different in model 111, 
where most of the departure of the fluid motion from uniform flow occurs much nearer 
to the keyhole. The result is that  heat is convected more strongly downstream from 
the keyhole than in the other models. To a lesser extent models I1 and IV  show the 
same feature when compared with model I (see the values of A ;  the difference is too 
small to show clearly in figure 9). It is probable that the reason for the difference is 
that, in cases where most of the motion occurs near to  the keyhole, the velocities are 
higher, giving less time for lateral diffusion of heat from the laser. The temperature 
distribution found here agrees well with that obtained by Mazumder & Steen (1980), 
and is similar to that found by Malmuth (1976). 

A quantity of practical interest is the rate of supply of energy. This is given per 
unit length of the keyhole by 

where T is the temperature in the molten metal. Working to the linear approximation 
employed here we find that it is equal to 

- 2nakg’(a), 
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FIGURE 9. Graph of h(r) ,  proportional to that part of the temperature field which depends on 8, 
for each model in the liquid region. The curves are distinguished by the same conventions as for 
figure 8. 

where g is given by (3.14) and is the same for all four models. It is therefore 

with a numerical value for the case given in this section of 2314 W cm-'. Notice, 
however, that  in steel, for example, the ratio of latent heat of evaporation to the heat 
required to raise the metal to its boiling point is large (Andrews & Atthey 1975), so 
that, even though the total mass of metal vaporized without recondensation in the 
keyhole may be small as indicated in 3 1 ,  the amount of heat required for this purpose 
may not necessarily be negligible. Equation (5.2) does not include it, nor does i t  
include heat lost by reflection or radiation from the ends of the keyhole, or convected 
away in the form of hot gas. Nor does i t  take account of yet further heating of the 
lost metal vapour beyond its boiling point. It is not possible to find the way in which 
the different models affect the heat flux given by (5.1) without solving (partially, a t  
least) for the terms of order U 2 ;  however, (5.2) shows that, to the approximation 
considered here, an increase in the speed of welding requires an increase in the rate 
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- 
10-5  10-4 10 -3  10-2 lo-' 

aU/4us 

FIGURE 10. Graph of power W consumed per centimetre as a function of a U / 4 ~ ,  for stationary 
keyhole conditions; the function W/{k,(T,--T,) +k(T,-T,)} is given. Also shown is b /12a ,  a 
measure of the width of the weld, with c = 0679. The solid circles show points on the curves 
corresponding to the values of the parameters in the case studied here. 

of supply of thermal energy, on the assumption that the keyhole size is unaltered. 
Similarly, the thermal power required increases with keyhole size; to use as little 
power as possible the product aU should be kept as small as possible. The power 
consumption is of practical importance, so its relation to aU is shown in figure 10 
for a range of values consistent with the approximations used here. The width of the 
weld itself is also of some interest and is equal to  2b, where b is given by (3.15); this 
is equivalent to a power-law dependence on both the radius a of the keyhole and the 
welding speed U. In  dimensional form it can be written 

( 4 ~ ~  ecy)l-c, b = .CU-l+C 

where 

This relationship is also shown in figure 10, plotted in dimensionless form with a value 
for c appropriate to the constants used here. 

It is of some interest to  notice that in model IV y is not zero, so that the inviscid 
molten metal is not in irrotational motion. The important feature here is that the 
velocity is continuous in the transition from the solid to  the inviscid liquid, so the 
boundary conditions cannot in general be satisfied by an irrotational flow. It should 
be noted that the solid and liquid regions are different phases of the same material, 
with the consequence that the boundary between them is not sharply defined. There 
will be a region in which both solid and liquid phases exist together in thermodynamic 
equilibrium, with a thickness of the order of lop5 m (Andrews, Atthey & Byatt-Smith 
1980). The effects of viscosity acting a t  very short lengthscale can therefore generate 
vorticity in the same way that it may be generated a t  a porous boundary. It is likely 
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that the result obtained here hides a basic asymmetry between the melting and 
freezing processes. It seems natural that  the tangential component of velocity should 
be continuous as the metal melts, since if i t  were not, the substance would have to 
be accelerated impulsively, and a fluid would not be capable of applying such a force. 
On freezing, however, the molten metal is ‘captured’ by the solid substance, and i t  
is quite possible for i t  to be impulsively decelerated to match the tangential velocity 
of the solid. The fact that the vorticity is not zero here could mean that caution is 
necessary in models of related processes. Andrews & Atthey (1976) for example 
assume that the flow of liquid in the ablating surface of a laser-produced cavity is 
irrotational; the geometry and assumptions of their problem are rather different, so 
the approximation may be justifiable, but it cannot be regarded as obvious. 

Values for the parameters of the model appropriate to  a number of other metals 
have been used and the corresponding forms of the solutions obtained. All give 
qualitatively similar results, with the least variations from uniform flow being given 
(in all cases) by the variable-viscosity example (model 11); the model with the highest 
velocity on the vaporizing boundary was always model IV. The differences between 
the models in the effect of convection on the temperature distribution was greater 
in metals with a low thermal conductivity such as lead than in, for example, 
aluminium with a high thermal conductivity. I n  all cases model I gave the least effect 
and model IV  the greatest, with model I1 lying between them. 

We have seen that i t  is possible to obtain approximate solutions for the liquid flow 
of molten metal past the keyhole formed during laser welding a t  low speeds. The 
conditions for validity of the models are (3.1) in all cases, and (2.13) in models I, I1 
and in the outer molten region of model 111. The models reproduce the observed 
downstream displacement of the boundary between the solid and liquid states, and 
this feature is found to  be more marked in those models for which the fluid motion 
is concentrated nearer to the keyhole. 

One of us (M. Davis) is indebted to the Welding Institute and the Science and 
Engineering Research Council for the award of a Case Studentship. 
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